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Abstract
Ebola virus disease (EVD) is a zoonotic filovirus caused by an RNA virus of the family filoviridae
and genus Ebolavirus. It is transmitted by direct human to human contact via body fluids or
indirect contact with contaminated surfaces. Due to its transmission mode the disease spreads so
fast. The previous outbreaks have caused high mortality rates of up to 90%. Currently African
countries like Democratic Republic of Congo and Uganda are experiencing a re-occurrence of
EVD oubreak. The porous borders between African countries has always been an issue of concern
with relevant authorities not taking meaningful measures to control cross border movement
of persons. This poses a challenge to health systems especially in Kenya which is at a close
proximity to Uganda. Ebola virus is known to persist in the immune-sites like the testicles,
inside the eye and the central nervous system in people who have recovered from the disease. In
women who get infected while pregnant the virus persists in the placenta, amniotic fluid and
the foetus whereas for lactating mothers the virus may persist in breast milk. In this paper,
an ordinary differential equation that incorporates a carrier class after disease recovery, relapse
and re-infection is formulated. The model is locally asymptotically stable when the reproduction
number is less than one. The models endemic equilibrium indicate that the rate of change
of infection with respect to time is zero, indicating that the disease is at a constant rate in
the population regulated by deaths and recoveries. Simulation results show that Ebola disease
carriers can contribute greatly to the disease burden.
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1 Introduction

Mathematical models are instrumental in providing guidance regarding the future projections of
ongoing public health crises, and in assessing the potential impact various intervention strategies
may have towards the transmission control. Ebola virus is known to persist in the immune-sites
like the testicles, inside the eye and the central nervous system of people who have recovered from
the disease with resurgence of infections from this recoveries [1]. In women who get infected while
expectant, the virus persists in the placenta, amniotic fluid and the foetus, whereas for lactating
mothers the virus may persist in breast milk [1]. Currently, there is no cure for Ebola, however
treatment against EVD mainly consists of providing medical care based on symptomatic therapy
to maintain the vital respiratory, cardio-vascular and renal functions [2]. Several mathematical
Ebola models for instance [3], [4], [5], [6], [7] among others have been developed to describe the
transmission dynamics of Ebola virus.

A mathematical model which exhibits that the infection in Ebola virus is reccurent is developed in
[8]. From the findings of the study, the simulation results showed that Ebola models that do not
incorporate relapse and reinfection may underestimate the disease burden. The main contribution
of this paper is to study the contribution of the carrier class (C) on the relapse and re-infection of
transmission dynamics of Ebola virus. The paper is organized as follows; in section 2 the relapse
and re-infection with carriers SEIRC model is developed and described. In section 3, positivity
and boundedness of the model is studied, the basic reproduction number derived, the local stability
of the disease free equilibrium and the endemic equilibrium is discussed. In section 4, the model
developed in section 2 is simulated under given conditions.

2 Description and Formulation of the Model

In this section, a model is developed that subdivides the human population into classes of susceptible
S(t) , exposed E(t), infected I(t), recovered R(t) and carriers C(t). The susceptible population is
recruited at the rate Λ and are exposed at a rate β, the exposed population get infected at a rate γ,
the infected individuals die as a result of infection at the rate δ and recover at the rate α, while θ
represents the fraction of individuals who permanently recover from Ebola and natural death occurs
in all classes at the rate µ, while π represents the rate of relapse of carriers. The total population
is given by;

N(t) = S(t) + E(t) + I(t) +R(t) + C(t) (2.1)

The system of differential equations describing the dynamics of the model is as follows;

dS

dt
= Λ− βSI − µS + πC (2.2)

dE

dt
= βSI − (µ+ γ)E

dI

dt
= γE − (µ+ δ + α)I

dR

dt
= αθI − µR

dC

dt
= α(1− θ)I − µC − πC
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and takes the initial condition;

S(t0) = S(0), E(t0) = E(0), I(t0) = I(0), R(t0) = R(0), C(t0) = C(0); t0 = 0 (2.3)

where S(t), E(t), I(t), R(t), C(t) denote the susceptible, exposed, infected, recovered and carrier
populations respectively.

3 Qualitative Analysis of the Model

3.1 Positivity and boundedness of solutions

Since the model describes human population, we show that the state variables of model (2.2) are
non-negative and ultimately bounded in Γ(R5).

Proposition 3.1. Solutions of system (2.2) with initial condition (2.3) are positive for all t ≥ 0

Proof. To prove that for all t ∈ [0, t0], St,Et, It, Rt, Ct will be positive in Γ(R5). All parameters
used in the model are assumed to be positive. Taking the lower bounds in each of the equations
and solving yields;

S(t) ≥ e−(µt+βI+πC)dt ≥ 0 (3.1)

E(t) ≥ e−(µ+γ)(t) ≥ 0

I(t) ≥ e−(µ+δ+α)(t) ≥ 0

R(t) ≥ e−µt ≥ 0

C(t) ≥ e−(µ+π)(t) ≥ 0

Therefore for all t ∈ [0, tf ], S(t), E(t), I(t), R(t), C(t) will be positive and remain in R5.

Proposition 3.2. Solutions of system (2.2) with initial condition (2.3) are ultimately bounded.

Proof. From Proposition (3.2) the solutions of the system (2.2) given the initial condition are
ultimately bounded for all t ≥ 0

Let N(t) = S(t) + E(t) + I(t) +R(t) + C(t). From system (2.2),

dN(t)

dt
= Λ− µN(t)− δI(t) < Λ− µN(t)

Thus N(t) < Λ
µ

+ ε for all large t where ε is an arbitrary small positive constant. Thus S(t), E(t),
I(t), R(t), C(t) are ultimately bounded.

Therefore, the model is biologically meaningful and mathematically well posed.

3.2 The basic reproduction number and equilibrium

Definition 3.1. The basic reproduction number (R0) is the average number of secondary infections
due to a single infectious individual introduced in a fully susceptible population over the course of
the infectious period. If R0 < 1 it means that on average, an infected individual produces less than
one new infected individual while R0 > 1 means each infected individual produces more than one
new infection on average.

R0 for model (2.2) is determined by the method of next generation matrix approach [9] and is given
by;

R0 = βΛ
µ(µ+δ+α) (3.2)
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3.3 Disease free equilibrium

A state in which no disease is present in the population. At disease free equilibrium E = I = R = 0.

Proposition 3.3. For the model in system (2.2) there always exists disease free equilibrium point
denoted E0=(S0, E0, I0, R0, C0) = ( Λ

µ
, 0, 0, 0, 0)

3.4 The endemic equilibrium (EE)

This is a state where the disease persists in a given population. This occurs whenever R0 is > 1.
The endemic equilibrium of system (2.2) is given by;

E∗ = (S∗, E∗, I∗, R∗, C∗)

Proof. To prove the existence of the endemic equilibrium, it is shown that dI
dt
> 0 whenever R0 > 1.

From equation (3) of system (2.2);

dI

dt
= γE − (µ+ δ + α)I (3.3)

but,

E =
(µ+ δ + α)I

γ
(3.4)

Therefore substituting for E equation (3.4) into equation (3.3) yields,

dI

dt
= 0 (3.5)

This implies that I is a constant. Theoretically, the number of infectives in a population remains a
constant this can be attributed to the to the fact that there are deaths and recoveries as much as
new infections may arise.

3.5 Local stability of the DFE

The stability of equilibrium point is closely linked to the basic reproduction number (R0) of the
model under study.

Proposition 3.4. For any time t ≥ 0, the disease free equilibrium E0 = ( Λ
µ
, 0, 0, 0, 0) of system

(2.2) is asymptotically stable when R0 < 1 and unstable when R0 > 1.

Proof. Evaluating the Jacobian matrix of system (2.2) at DFE where E0(S0, E0, I0, R0, C0) =
( Λ
µ
, 0, 0, 0, 0)

yields;

JDFE =


−µ 0 −βΛ

µ
0 π

0 −(µ+ γ) βΛ
µ

0 0

0 γ −(µ+ δ + α) 0 0
0 0 αθ −µ 0
0 0 α(1− θ) 0 −(µ+ π)

 (3.6)

The eigenvalues of the matrix (3.6) are;

λ1,2 = −µ

,
λ3 = −(µ+ π)
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To solve for the remaining eigenvalues, we study the reduced matrix;

JR =

(
−(µ+ γ) βΛ

µ

γ −(µ+ δ + α)

)
(3.7)

Whose determinant is

{(µ+ γ)(µ+ δ + α)− γβΛ

µ
}

which can be expressed as;

1−R0
γ

µ+ γ

and trace

{−(µ+ γ),−(µ+ δ + α)}

Using the Routh Hurwitz criterion the matrix (3.7) has a negative trace and the determinant is
positive if and only if R0 < 1. This shows that the DFE is locally asymptotically stable whenever
R0 < 1. This implies that when a small number of infected individuals at class I1 are introduced
into the population, after sometime the system returns to the DFE.

3.6 Local stability of endemic equilibrium (EE) point

Theorem 3.1. The endemic equilibrium point E∗ of system (2.2) is locally asymptotically stable if
R0 > 1.

Proof. The Jacobian matrix of system (2.2) at endemic equilibrium is;

JEE =


−(a+ µ) 0 −βΛ

µ
0 π

0 −(µ+ γ) βΛ
µ

0 0

0 γ −(µ+ δ + α) 0 0
0 0 αθ −µ 0
0 0 α(1− θ) 0 −(µ+ π)

 (3.8)

where a = βI. From matrix (3.8) the diagonal elements are negative. The eigenvalues of any square
matrix say b are equal to those of BT . Matrix (3.8) is stable if it is diagonally dominant in columns.
Set φ = max{b1, b2, b3, b4, b5} where;

b1 = | − a− µ| > |a| (3.9)

b2 = | − (µ+ γ)| > |γ|

b3 = | − (µ+ δ + α)| > | − βΛ

µ
+−βΛ

µ
+ αθ + α(1− θ)|

b4 = | − µ| > 0

b5 = | − (µ+ π)| > |π|

which indicates that matrix (3.8) is diagonally dominant in columns, then by the Gershgorin disc
argument [10], the eigenvalues of matrix (3.8) lie within atleast one Gershgorin disc.

Therefore the endemic equilibrium is locally asymptotically stable wheneverR0 > 1. Epidemiologically,
introducing a small number of infected individuals into a susceptible population, each infected
individual will produce more than one secondary infection on average in the entire infectious period.
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4 Numerical Values and Analysis

Matlab software was used to illustrate the numerical results describing the theoretical results for
system (2.2). The parameters used in the simulation are either obtained from literature or estimated.
The parameter values have been varied to better understand the role of carriers in disease relapse
and re-infection.

Table 1. Parameter values used in simulation

Parameters Description Range Source

β Infection rate 0.02× 10−6 Varies

θ Fraction acquiring immunity 0.8 Varies

π Relapse rate of the susceptible 0.9 Estimated

µ Natural death rate [0, 1]day−1 [2]

δ Disease induced death rate [0.5]day−1 [6]

α Recovery rate (0.7-0.9) Varies
1
γ

Incubation period 1 week

Fig. 1. Impact of Carriers on the number of Infections

Fig. 1 illustrates the impact of carriers on the infected class. With a small percentage of carriers
relapsing (π = 0.05) the infected population peaks at 150 infections, where as with (π = 0.5) the
infected population peaks at approximately 270 infections.

With (π = 0.05, 0.1, 0.5), the susceptibles drop at a sharp rate to the exposed class as shown in
Fig. 2. This implies that regardless of the number of carriers relapsing, the susceptibles are affected
greatly.
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Fig. 2. Impact of Carriers on the Susceptibles

Fig. 3. Impact of Carriers on the number of Infections when (π = 0)

In Fig. 3 when π = θ = 0, the system (2) reduces to an SEIR model which illustrates number of
infections arising from a new disease episode without carriers relapsing and re-infection.
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5 Discussion

An EVD outbreak can occur in a large magnitude and overwhelm the fragile health systems of the
affected countries. Local and international agencies efforts to create response on patient care and
interruption of transmission have still not brought the epidemic to a halt, with recurrences being
observed. Short incubation periods of EVD are likely due to exposure to highly contaminated
materials. The risk of EVD infection is considered very low if appropriate infection prevention and
control precautions are strictly followed and also not considered contagious before initial onset of
symptoms. The existence of the endemic equilibrium shows that with the carrier class the infection
is constantly in the population with stability analysis indicating that the model is locally stable.
The numerical simulation of the model demonstrates that carriers of Ebola virus have a significant
impact on the relapse and re-infection of the disease.

6 Conclusion

The 2014 EVD outbreak in West Africa attracted global attention due to the high incidence and
mortality rates as well as potential of international spread of the virus as a result of human travel.
The disease has kept on recurring and therefore there is need to assess new dimensions on how to
control future outbreaks. In this paper, a new class of carriers for Ebola virus disease was introduced
to determine their impact on relapse, reinfection and recurrence of the disease. The results in this
paper extend the existing studies on Ebola Virus.
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