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Abstract

We consider, for a bounded open domain < in IRR" and a function

u:Q — IR"™, the quasilinear elliptic system:

~divo(x,u(x), Du(x)) =v(x)+ f (x,u, Du)+divg (x,u) in Q
(QES)(f‘g){u =0 on éQ,

(1). We generalize the system (QES )(f’g) in considering a right hand side

depending on the jacobian matrix DU. Here, the star in (QES )(f' ) indicates
that #may depend on DU. In the right hand side, vbelongs to the dual space

-1,p' * .
WP (Q,a) ,Rm), [l+i:1, p >1], fand g satisfy some standard con-
PP

tinuity and growth conditions. We prove existence of a regularity, growth and
coercivity conditions for o, but with only very mild monotonicity assump-
tions.

Keywords

Quasilinear Elliptic, Sobolev Spaces with Weight, Young Measure,
Galerkin Scheme

1. Introduction

In this paper, the main point is that we do not require monotonicity in the strict

monotonicity of a typical Leray-Lions operator as it is usually assumed in pre-

vious papers. The aims of this text are to prove analogous existence results under

relaxed monotonicity, in particular under strict quasi-monotonicity. The main
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technical tool we advocate and use throughout the proof is Young measures. By
applying a Galerkin schema, we obtain easily an approximating sequence u, .
The Ball theorem [1] and especially the resulting tool mode available by Hun-
gerbiihler to partial differential equation theory give them a sufficient control on
the gradient approximating sequence Du, to pass to the limit. This method is
used by Dolzmann [2], G. ]. Minty [3], H. Brezis [4], H. E. Stromberg [5], Muller
[6], ]. L. Lions [7], Kristznsen, J. Lower [8], M. I. Visik [9] and mainly by Hun-
gurbiihler to get the existence of a weak solution for the quasi-linear elliptic sys-
tem [10]. This paper can be seen as generalization of Hungurbiihler and as a
continuation of Y-Akdim [11].

This kind of problems finds its applications in the model of Thomas-Fermis in

atomic physics [12], and also porous flow modeling in reservoir [13].

2. Priliminaries

Let w= {a)ij,O <i<ml<j< m} the weight function systems defined in <
and satisfying the following integrability conditions:
1
o; € L (), o™ € L, (Q), for some p e J1, 00 @2.1)

loc loc

and 3s > 0 such that w;* € L' (Q).

with @ :{a)j = a)éfp',os i<nl<j< m} , o=(o,,) with
1<s<n,1<r<m and which satisfies some hypotheses (see below).

We denote by IM™" the real vector space of mxn matrices equipped with
the inner product M : N = > MyN; -
i
The Jacobian matrix of a function u:Q — IR™ is denoted by
Du(x) =(Dyu(x), Du(x),+, Du(x)) with b, =a/a(x,)-
The space W™ (Q,,R™) is the set of functions

{u =u(x)/uel?(Qa, |Rm)}, D,u :2—)‘326 L* (2 @, R™),

1<i<n1<j<m.

with
1
L* (Q,@;, R™) = {u =u(x)/|u[@ eL”(©, R )}

The weighted space Wt (Qv o, R" ) can be equipped by the norm:

1
m
lul,. . = ZI ‘uj‘pa)ojdx+ y ”Diju‘pwijdx '
P j=1 @ 1<i<n 1< j<m e

where @) = (0)0 j) and 1< j<m. the norm "'"Lw,p is equivalent to the norm
1
-l on Wo® (Q.0,R™ ), such that, [||ufl| = (Z et o o Do e 06)°-

Proposition 2.1 The weighted Sobolev space Wl’p(Q, o, |Rm) is a Banach
space, separable and reflexive. The weighted Sobolev space Wol‘p (Q, o, R" ) Is the
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closure of Cy (Q,CO, |Rm) in WP (Q. o, |Rm) equipped by the norm ”'"Lp,w'

Proof: The prove of proposition is a slight modification of the analogous one
in [14] [Kufner-Drabek].

Definition 2.1 A Young measure (IQX)XEQ is called W*P -gradient young
measures (1< p <o) if it is associated to a sequence of gradients Du, such that
u, Is bounded in whP (Q) The W"? -gradient young measures ('9X)X€Q is
called homogeneous, if it doesn't depend on x; i-e, if 9, =9 fora.e X€ Q.

Theorem 2.1 (Kinder, Lehirer-Pedregal) let (Ux)x <> be a family of probability
measures in (C(M mxn)) . Then, \U,), , is W“P Young measures if and only if

1) There is a U EWl’p(Q, |Rm) such that DU(X)Z_[Mmxn Adlgx<A) , a.e in
Q.

2) Jenser’s inequality. ¢(DU (X)) < JM e ¢(A)d19X (A) hold for all ¢ X?
quasi-convex, and.

3) The function: l//(X):J‘

M mxn

A|p d%,(A)e'(Q). Here, X® denotes the
(not separable) space:
X" :ﬁ/ec(Mm*“):|y/(A)|50x(1+|A|"),fora|| Ac M}

proof: see [15].

Theorem 2.2 (Bal) Let Qe IR" be Lebesgue measurable, let K € R™ be
closed, and let U; Q> R", jeN, pe a sequence of Lebesgue measurable
functions satistying u, — K , as ] > », ie. given any open nejghborhood U of
KeR™, lim; f

of u; and a family 9,,x € Q, of positive measures on IR™, depending mea-

L. |XeQu J( EU‘ 0. Then there exists a subsequence u,

surably on x, such that

1) "19" _[ d8, <1, forae xeQ.

2) suppd, cK forae Xe).

3) f (Uk)é* <19X, f>= IRm f (l)dQX (/1) in L (Q) . for each continuous
functions f :R™ — IR satistying

lim f (2)=0,[4| > o [1].

Theorem 2.3 (vitali) Let Q € IR" be an open bounded domain and let u,
be a sequence in L (Q, R" ) with 1< p<oo,

Then u, is a cauchy sequence in the L’ -norm if and only if the two fol-

lowing conditions hold:

1) u, is cauchy in measure (ie: V>0, ‘{ u, (X)—up (X)| > g}‘ =0
as m,n — oo -

2) |Un |p is equiintegrable i.e.:

(sup, | Ju,|" dx <o and V&>0,36>0 such thar | |u,|"dx<& for all n
whenever £ = and |E|<s ). Note that if v, converges pointiest, then u,
Is cauchy in measure.

Hypotheses (H;) (Hardy-Type inequalities): There exist some constant C> 0,

some weighted function } and some real g (1< q < o0 ) such that,

S o 7,-<x>dx]; [zuo\j
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forall UeW,” (Q,a), |Rm),with 7={7/j [1<j< m} .
The injection Wol'p (Q,a), R" ) oo L (Q,}’, R" ) is compact, and
Wol'p (Q,a), R" ) oo L (Q, R™ ) is compact, (by [14]) with
nps .
<r <—n(s+1)— s if ps<n(s+1)
r>1 if n(s+1)< ps

(H:) Continuity: o:QxIR"xIM™" — IM™" is a Carathéodory function
(i-e x> o(xu,F) is measurable for every (U F) eR" x IM™"
(u,F)+> o(x,u,F) iscontinuous for almost every X €& Q ) (Hz) Growths and
coercivity conditions: There exist ¢, >0, ¢, >0, A€ L*(Q ( ) A € Ll( )
ﬂg e L (Q), O<a<p, 1<g<owo and £ >0 such that for all
1<r<n, 1<s<m, we have:

lows<x,u,F>|wmﬁé{&(x)milmr’”’-Iujl“’”'w > w.ﬁ“”le,-lp‘l} 22)
j=1 1<i<N 1< j<m
and
o-(x,u,F):F2—ﬂz(x)—;a)oj(x)“/pﬂs(x)|uj|a+c21_ Zl: a)ij(x).|Fij|p (2.3)
1= <i<nI<j<m

(H5) Monotonicity conditions: » satisfies one of the following conditions:

1) Forall X€Q),andall ue R", the map F s o (xu,F) isa C'-function
and is monotone (i-e, (G(X,U, F)—O'(X,U,G))Z(F —G) 20, for all XeQ, all
uelR™ andall F,GeIM™").

2) There exists a function W :Qx IR™ x IM™" — IM™" such that

oW
O'(X,U,F):a—F(X,u,F) and F>W(x,u,F) isconvexand C' function.

3) For all X€Q, and for all ue R" the map F > o(x,u,F) is strictly
monotone (ie, o(x,u,.) ismonotone and:
[(o(xu,F)-0(xu,6)):(F-G)=0]=F =G).

4) o(x,u,F) is strictly p-quasi-monotone in £ ‘e,
LMM(a(x,u,l)—a(x,u,ﬂf)):(ﬁ—/f)d&(/i)>0

for all homogeneous W P" -gradient young measures J with center of mass
A =(4id) which are not a single Dirac mass.

The main point is that we do not require strict monotonicity or monotonicity
in the variables (u,F) in (/%) as it is usually assumed in previous work (see
[15] or [16]).

(FO)*: (continuity) f:QxIR™ x IM™" — IR™ is a Carathéodory function
i-e: x> f(xu,F) is measurable for every ue R",and FeIM™",

(u, F) > f(x,u,F) is continuous for almost every X€€).

: (growth condition): The exist: b e L” (Q), ¢, >0, ¢, >0 such that:

1

1 1 ot
£, Oou)] <| B ()it [uy [+ o [ |0
r,s
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V1< j<m (GO)*: (continuity) the map g:QxIR™ - IM™" is a Ca-
rathéodory function. (Gl) : (growth condition) There exist: b, L? (Q)

1

1 1 q
95| < @f {bz“LZ?’jp |”i|pl
j

Forall 1<r<n and 1<s<m.

Our aim of this paper is to prove the existence of the problem (QES)
the space Wol'P (Q,a), R" )
Remark 2.1 -The condition (Fo) and (G,) ensure the measurability of f

f.g m

and g for all measurable function u.

- (R) and (Gl)* ensure that growths conditions, in particularly. if
u €W01’P (Q,a), |Rm) then f (-,U(-), D())U() and g(.,u):Du Isin
L'(Q o)

- Exploiting the convergence in measure of the gradients of the approximating

solutions, we will prove the following theorem.

Theorem 2.4 If pe (1,0) and o satisfies the conditions (Hy)-(Hs), then
the Dirichlet problem (QES )*f has a weak solution U GWol'p (Q, o, R" ) , for
every V ew™” (Q,CU*, R" ), fsatisﬁes (Fo )* and (Fl)* and g satisties (G,)
and (G,).

In order to prove theorems, we will apply a Galerkin scheme, with this aim in
view, we establish in the following subsections, the key ingredient to pass to the
limit for this, we assume that the conditions: (H)-(H5), (Fo )*, (Fl)*, (G,) and
(@)-

Lemma 2.1 For arbitrary U eng,p (Q,a), |Rm) and VeW ™" (Q,a)*, R™ ) ,

the functional
F(u):W," (Qo,R") > IR
P jﬂa(x,u(x), Du(x)): Do (x)dx—(v,p)
—J, f(xu,Du):pdx+[_g(xu): Dedx.

is well defined, linear and bounded.
Proof Forall ¢ EWol’p (Q. o, R" ) , we denote

Fu)(@)=lL+1,+1;+1,

with
1, :jga(x,u(x), Du(x)): D(x)dx,
and
I, =—(v,9).
l, =—ij(x,u,Du):godx
l, =], 9(xu): Dpdx
We define

I, = [ % (xu(x),Du(x)): Dp(x)x
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Firstly, by virtue of the growth conditions (/) and the Holder inequality, one
has

D¢ (x)|dx

|Irs|£jnars(x,u(x),Du(x))|
< [yt 0] xS, (o

+e Yy wf? |D | : }|Dr5¢|dx
I<i< j<m

Drsq)(x)|p wrSdX)ﬂp

/ /p'
ALouotsl o) (£ Lol 7]

o Up’ X v
+(1<i<r§j<m '[Q|Diju| a)ijdxj (.[Q'Drs(p| a)rst) ]

with ( p= p'( P —1)) , and thanks to Hardy inequality we have:
1p'
o (S lul* 7x) +01;|| Dy],., [Dul

<c'B |l ol o, +1lp,
with ¢’ = max(c,l) . Which gives

u<eBllaly + Iy, ., Jlel,, <=

P, ors :|

1] <ch {Ilﬂillpr ¢, +¢.|Ddl

I T 2

and

1| < [ Mlelax<v, , -l ., <
l, = ZIQ f;(x,u,Du)e, (x)dx
]

We denote | =UQ f, (xu, Du)gz)j (x)dx‘ .
5, SJ'Q|fj (x,u,Du)”gpj (x)|dx

<L 0l e b o (oo
], Xl ()
< (1 GO ) (o O ]

(i |u|dx) (Lo (o e
(1ol ) (1l )

<Pl ol +<{ S 0] ok, -, 00

p-1

|Du] a)ojdx
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P
<l ol +c-Ioul, ol +<lol,..-[oulf.
P
s[||b1||+cx-||ou||1,p,w+c;~||Du||;fp,m]-||co||l,p,w-

|4 = Z J.Qgrs (X'u)Drs(de

J.Q|grs|:|Drs¢|dX
1 1 1

< J‘Q bzer - D,,pdX + Z,: IQ yj’? (X)|uj |% a)rE D, pdx

X 1
< (J‘Q|b2|p’ dX)p/ -(IQ|DrS(p|p a)rsdx)p
- 1
@(Llw "7, (8" ([ [Dusl” @ (x)x)’
1

4 =
= "bz "p' ||Drs¢)|1-P‘(Urs * "u”:}/ (J-Q| Drs(p|p a)rst) i

1

a ]
<[l Dol ., 2, (D00l @)’

qa
ulg, 1ol .,

<[e.ll, -[Pel, ., +
L

Hence | <¢, ||¢"1,p,w . With ¢, <.

Finally the functional F(.) is bounded.

Lemma 2.2 The restriction of F to a finite dimensional linear subspace V of

1
Wo’p (Q, 0, R" ) is continuous.

Proof Let d be the dimension of V and (e,e,,---,e,) a basis of V. Let
u; = Z a' -e, beasequence in V'which converges to u = Z a'e, in V. The
sequelﬁ'cgéj aj) converge to ae IRY, so u; >u and Dllj'jgd—> Du a.e., on
the other hand ||u i||p and "Duj"p are bounded by a constant ¢. Thus, it follows

by the continuity conditions (), that
a(x,uj,Duj): Dy — o (x,u,Du): Dp
forall @ EWol’p (Q, o, R" ) and a.e.in . Let Q' be a measurable subset of

Q) andlet @ EWol’p (Q,a), R™ ) )
Thanks to the condition (/), we get

.[Q/‘a(x,uj,Duj):D(p‘dxmo,
By the continuity conditions (F;) and (G,) we have:
f(x,uj,Duj)-go—)f(x,u,Du)-go
And
g(xu;)-Dp— g(x.u)- Dy
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almost everywhere. Moreover we infer from the growth conditions (Fl )* and
(G,) thatthe sequences:
(a(x,uj,Duj): D(p), (f (x,uj,Duj)m) and (g(x,uj)« D(p)
Are equi-integrable. Indeed, if Q' C Q) is a measurable subset and
peW, P (Q, o, R" ) then:
_[Q, f (X,uj,Duj)-(o‘ dx <o (by (Fl) and Hoélder inequality).
J‘Q, g (X, u; ) Dgo‘ dx <o (by (G) and Holder inequality).
IQ"U<X’ u;, Du; ) : Dga‘ dx <o (by Holder inequality).
which implies that O (X,U ;» Du; )1 D¢ is equi-integrable. And by applying the

Vitali’s theorem, it follows that

jﬁa(x u;, Du; ): Dodx — jﬂa(x,u, Du): Dgdx,

) J 1
forall @ EWol'p (Q, o, R" ) )
Finally

Iim<F(uj),(p>:<F(u),¢)>,

joo
which means that
F(u)>F(u) inwW™*"(Qe",R").

Remark 2.2 Now;, the problem (QES )*fg is equivalent to find a solution
u EWol’p (Q,a), R™ ) such that <F (U),§0> =0, forall ¢ GW()l'p (Q, o, R" )

In order to find such a solution we apply a Galerkin scheme.

3. Galerkin Approximation

Remark 3.1 (Galerkin Schema)

Let V,cV, c Cng’p (Q, o, R" ) be a sequence of finite dimensional sub-
spaces with deNVk dense in Wol'p (Q,CU, R" ) The sequence V, exists since
Wol P (Q, o, R" ) is separable.

Let us fix some & we assume that V/, has a dimension d'and that
(e,,e,,--,e,) isabasisof V, .Then, we define the map,

G:RR* > R"
d

(ai,-n,ak)|—>(<F(u),e1>,--~,<F(u),ek>);u =236

i=1

Proposition 3.1 The map G is continuous and G(a)-a lends to infinity
when |a| .. tends to infinity.

Proof. Since Frestricted to V, is continuous by Lemma 2.2, so G is conti-
nuous.

Let aclR® and u= > a'-g in V, , then G(a)'a=<F(U),U> and
which implies that |a]|,. 'ténds to infinity if "u"l,pw tends to infinity.

G(a)-a= Y (F(u),a'-g)=(F(u)u)

1<i<d

and
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L. - Hz
1<i<d

( Z |a | "e "l pwj
1<|<d L.P. 1<i<d

SC-IIaIIRP

which implies that |a|,, tends to infinity if "U" tends to infinity.

1,p,0
Now, it suffices to prove that

<F (u),u> — o when ||“||1,p,a, - o,

Indeed, thanks to the first coercivity condition and the Holder inequality, we

obtain

I =_[Qa(x,u, Du): Dudx

2_"22”1_.[ ﬂaa’g,/p|u-|a dx+c, I|D,Ju| @;dx

1<i, j<n,m

By the Holder inequality, we have

I TR A (Lz ;|
<] oy [

(pla)a )“’ P

J||1,p,a)gj ’

’ . R .
where C' is a constant positive. For [Uf, = large enough, we can write

| |> "12” _C i, p oy +02'Zl<i j<nm Du

2 =[], - ||ﬂs||<p,a) ol , +eeul -

I
i 1,p. @

And since

V=K u< Ve [l
Finally, it follows from the growth condition (Fl)* and G, that:

| :Ua f(xu, Du)-udx‘

<(Ibdl, +e-Ioul, ,, +esoul, ., ).,
<Cy-|u

1Lp,0

||1,p,w

9
17| =[] o (). Du] < [nbz L +||u||:y}-||ounl,p,w <c,lul,

with c, isaconstant. With; O<a < p and p>1, we get:

’ u"l,p,a) _C'"A’a‘"(p/a)' '”ula

N L S ol P
I—1"=1">¢,-c"|u oo (3.1)

oo =IMs e

—[4all = s full ..,

Consequently, by using (3.1), we deduce

I=1"=1" >0 asfu -

and
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I "

e il
<F (u),u> S o as ||u||1vp’w S,

Remark 3.2 The properties of G allow us to construct our Galerkin approxi-
mations.

Corollary 3.1 For all kelIN , there exists (u )=V, such that
<F(Uk),(0> =0, forall peV,.

Proof By the proposition 3.1, there exists R >0, such that for all
ae 8BR (O)C R , we have G(a)-a>0-. And the usual topological argument
see [Zei 86 proposition 2.8] [17] implies that G (x)=0 has a solution
x € B, (0)- So, for all k € In, there exists (u ) =Vi» such that

(F(x'e,)e;)=0 forall 1< j<d, with d =dimV,
Taking U, = (X;i(ei ), & €V, , so we obtain:

(F(u,),0)=0, forall eV,

Proposition 3.2 The Galerkin approximations sequence constructed in corol-
lary (3.1) is uniformly bounded in Wol'p (Q,a), R™ ) ; e,
There exists a constant R >0, such that "uk"l,p,w <R, forall keN.

Proof Like in the proof of proposition (3.1), we can see that

<F(u),u> S o as ||u||l’p’w o,

Then, there exists R satisfying <F(U),U>>1 when ”U”lyp]w >R . Now, for
the sequence of Galerkin approximations (u,)cV, of corollary (3.1), which
satisfying <F(Uk),Uk>=0, we have the uniform bound ”Uk "Lp,w <R, for all
ke N .

Remark 3.3 There exists a subsequence (u,) of the sequence (u,)cV,,
such that.

u —u in W (Q0R")

and
u, — U Inmeasurein L' (Q, |Rm);
with
nps .
— if 1
<n(s+1)—ps if ps<n(s+1)
r=1 if n(s+1)< ps

The gradient sequence (Du,) generates the young measure 9, . Since
U, — U inmeasure, then (u,,Du,) generatesthe Young measure
(5u(x) ® LQX) , see [2]. Moreover, for almost xin €2, we have,

1) 8, Iis the probability measure, ie., ||9X "mes =1

2) 8  isthe W"™ gradient homogeneous young measure.

3) (9,.id)=Du(x), see[18].
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Proof. See [2]. (Dolzmann, N. Humgerbuhler S. Muller, Non linear elliptic

system ...)

4. Passage to the Limit

Now, we are in a position to prove our main result under convenient hypotheses.
Let

l, =(o(%.u,,Du, )= (xu,Du)):(Du, - Du). (4.1)

Lemma 4.1 (Fatou lemma type) (See [2]) Let. F:Qx R" xIM™" — IR be a
Carathéodory function, and u, : Q3 — IR™ ameasurable sequence, such that
mes 1, forae X€Q . Then

I|m|nff F(xu,Du )dx>[ [ F(xu,¢)dd (¢)dx (4.2)

(Du, ) generates the Young measure 9, , with "19 "

which provided that the negative part of F (x,u,,Du,) Is equi-integrable.

Proof.

Lemma 4.2 Let p>1 and u, be a sequence which is uniformly bounded in
Wo1 P (Q,a), R" ) There exists a subsequence of u, (for convenience not rela-
beled) and a function U EWol'p (Q, o, R" ) such that u, —u in
W, ? (Q 0, R"

And such that u, —>u in measureon ) andin LU (Q, R" ), with:

nps
r>1 if n(s+1)< ps

if ps<n(s+1)

Proof. see [10].
Lemma 4.3 The sequence (1,) is equi-integrable.
Proof
We have
I, =(o(xu,,Du, ) o(x,u,Du)):(Du, - Du)
=[o(x.u,,Du,):Du, |-[ o(xu,,Du,): Du]
~[o(x,u,Du):Du, |+[o(x,u,Du): Du]]
—I1+I2+I3+I4

(4.3)

We denote (Ii)f =—|:O'(X,Uk, Du, ): Du, I. Thanks to the coercivity condi-
tion (), we have

@
&desj |A]+c, Y of; |13|-|ukj|a+c > a)ij|Dijuk|de
@ 1<j<m I<i, j<n,m
pla
a
S ARYN Rt ) YW o
with p/a >1. Therefore,

() o< el ( S afuf’ | ey, el

< el gy + 0l
< 00,

(4.4)
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forall Q' 'cQ. )
Similarly for (lf ) .
Now, by using the growth condition (/) and the Hardy inequality (/), we

have

Jor

1/ Up' alp’ U p-1
Sﬂjg/wrsp(ﬂi_‘_cl 27" '|ukj| +C 2 @’ |Dijuk| jDrsukdX'

1<j<m 1<i, j<n,m

(If)_‘dx:jgja(x,uk,Duk): Du, |dx
(4.5)

Thus, by the Holder inequality, we obtain

(12) |ox < ﬁ["ﬂl"p, (1D o,0x)”
P v up alp'\P Ve
+C1(-[Q'|Df5uk| a)rsdx) (J‘Qr(zl<j<m Vi P |ukj| ) de (4.6)

' Cl[ Z J‘Q'(|Dijuk (X)|p’(p_1) a}ljdx)llp’](.“ngrsUk |p a)rst)upj|_

1<j<m

Jor

So, by combining (4.5) and (4.6), we deduce that

_[Q,|o-(x, u,, Duy ): Duy |dx < C'ﬂ("ﬂi"p, luell. .., +||Uk||1,p,,,,) < . (4.7)

()

We choose a sequence ¢, such that ¢, belongs to the same space V,

Similarly to

, we obtain ‘('k3 )‘ . Finally: 1, isequi-integrable.

. L . . .
and ¢, > ¢ in W p(Q,a), R™ ), this allows us in particular, to use U, —@, as

a test function in (3.1). We have:
J.Q|o-(x,uk,Duk):(Duk - Do, )|dx
:(v,uk—(pk)+j9f(x,uk,Duk)-(uk—gok)dx (4.8)
-, 9(xu,):(Du, — Dy, )dx.
The first term on the right in 4.8 converge to zero since (u, —¢,)—0 in
Wol'p(Q,wl |Rm). By the choice of ¢, , the sequence ¢, uniformly bounded
in Wol'p (Q, o, R" ) , and lemma (4.2). Next, for the second term:

I, = IQ f (X, U, DUk)'(Uk — O )dX in 4.8 it follows from the growth condition
F° and the Holder inequality that:

P
11| < ["bl"p +¢ '"D(”k P )"1,,,,(,, +C; -||D(uk ~ % )”p]"uk _(Dk”l,p,w

<(Inl, eI -0, )l -l

By the equivalence of the norm in Wol'p (Q,a), R™ ) and the sequence u, is
uniformly bounded in WP (Q,a), R™ ) , ”Uk ”pr is bounded.

Moreover, by the construction of ¢, , and lemma (4.2) we have:

”Uk — O ”Lp,w < "uk _u”l,p,co +||u % ||1,p,w

(lu =l +lu-al, . ) -0
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We infer that the second term in 4.8 vanishes as K — . Finally, for the last

term
I, = [ g(xU,):D(u, — g )dx
in 4.8, we note that
g(xu)— g(x,u)

Strongly in L” (Q, M mxn) by (G,)> (G,) andlemma (4.2).
Indeed we may assure that u, — u almost everywhere.

i <( I+l - 5, o -

1,p.0

q
< C,'(”bz | +luc-ade, j |(u, "1 b
q
< Iod, o=l (bl vl ok, )

a
o0l >0, Ju-ul,, >0 and u-a s, -0
Now, we consider (Ik)/:a(x,uk,Duk):(Duk—Du). We have, 1] is
equi-integrable because |, it is. So, we define
X =liminf [ I,dx=liminf [ (1, ) dx
> [ [ wa(o(xu,2):(4-Du))dd, (1)

So to prove (2?), it suffices to prove that:

X <0. (4.9)

Let £>0, so there exists k, € IN such that, for all k >k,, we have
dist(u,V, )< since: liminf, ., U—(0k||1lpyw<€, (u, —u)
Or in an equivalent manner dist(u, —u,V,)<e, VK>Kk, then for all

v, €V, , we have

—I|m|nfj (x,u,, Du, ):(Du, —Du))dx
:Ilrgl_JngQ(a(x,uk,Duk):D( ~u-g))dx+ | (o(xu,Du,): D((pk)):|

Combining (/) and (0.1), we get

X <I|m|an ,Ba)“‘[ﬂj +C Y Jfl/p ‘/ e D a’l/p |Dijuk|p71

1<j<m I<i, j<n,m :|

Dy (U —U—g )|dx+<v,(pk>.

X

Forall ¢>0,wechoose ¢, €V, such that
Ju, —u-g, ||1,p,w < 2¢, (4.10)
Forall k > k,, which implies that
[{v. )] < KV P +(u-u, )>‘ Hvu-u)<2¢M, . +o(k)

Hence lim,_,, (v,u,—u)=0. According to Hélder and Hardy inequalities,
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and by (4.1) we deduce that
X < liminf cﬂ("ﬂi"p,( i
Up Up
+C1(Iﬂ|uk|q.7/) p ( rs (uk_u_¢k)|pwrsdx)
p(p-) \YP o \UP
+01(ng% |Di,»U| ) .(J'Qa)rs Dy, (U, —u—gp,) ) j+|(v,¢k>|

<||m|nfc(||21|| Ju, —u- (Dk"lpm) il

k—o0

226 +0(K)

1/p
Drs (uk —U—g )|p 'wrsdx)

Q

—u- ¢k ||l, p,®

Therefore,
x <2ecf (4], +lul},, + M. e )
which proves that X <0, and finally
IQI,MmXHU(X,u,i) Adgdx < ”| wa 0(X,U,2): Dud, (2)dx.

Proof of theorem:

For arbitrary ¢ in Wol'p (Q,CU, R" ) It follows from the continuity condition
(Fo*) and (G,) that

f (x,u,Du)-@(x) — f(x,u,Du)-p(x)
and
g(x,u.):De(x) = g(x,u): De(x)

almost everywhere. Since, by the growth conditions (Fl*) » (G,) and the uniform
bound of u,, f(xu,,Du,)-¢(x) and g(xu,): Dp(x) are equi-integrable,
it follows that the Vitali’s theorem. This implies that:

l!LnJOJ'Q f (x,u,,Duy )-@(x)dx = JQ f (x,u,Du)-p(x)dx
forall pe U:’:lvk and
im.[gg (XU, ): Dp(x)dx = ng (x,u): Dg(x)dx
forall pe U:Zle We will start with the easiest case

d): E > o(x,u,F) is strict p-quasi-monotone. (4.11)
Indeed, we assume that .9, is not a Dirac mass on the set M with Xe M of

positive Lebesgue measure M| > 0. Moreover, by the strict p-quasi-monotonicity
of o(xu,-) and g, is an homogeneous W*P gradient young measure for a.e.
XeM .So, forae. XeM , with 7 =(9,1d)=apDu(x),with apDu(x) isthe
differentiable approximation in x. We get

[ mao(xU,2):(2-Du)d8, (2)

> [ na (XU, Du):(A-Du)dd, (2)

>o(x,u,Du): Lmen 2d8, (A)-o(xu,Du): Duj

>(o(x,u,Du): Du-o(x,u,Du): Du):O

>0

dg, (1)

M mxn
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On the other hand (4.9), integrating over {2, and using the div-cul inequali-

ty we have:
[ ma o (XU,2): 28, (4)dx
> [ [, ma o (XU, 2): Dud, (2)dx
> [ [ ma o (XU,2): 2d8, (2)dx,

Which is a contradiction with (3.8). Thus 4 =5, = Spun for a.e. XeQ).
Therefore, Du, — Du in measure when & tends to infinity. Then, we get
o(xu,, Du,)—> o (x,u,Du) for all X € ). In the other hand, for all
Qe U 8 o(xu.,Du,):Dp—oc(x,uDu):Dp ae XE€E Q. Moveover, for

all OO measurable, it is easy to see that:

fow & (%0, D, ) Dt < B (| + 7, + e, I

0
1,p,@ <

||1,p,w

because ”Uk "1 - <R. And thanks to Vitali’s theorem, we obtain:

<F(u),¢)>=0,forall pe Y-

kelN

which proves the theorem in this case.
Remark 4.1 Before treating the cases (a), (b) and (c) of (H;), we note that

jQ Lmen (o(x,u,4)-o(%u,Du)):(1-Du)d, (1)dx<0 (4.12)
Since
[, ] wn o (xU,2):(2-Du)dd, (2)dx =0,

thanks to the div-Curl inequality in (4.9). On the other hand, the integrand in
(4.12) is non negative, by the monotonicity of o . Consequently, the integrat-
ing should be null, a.e., with respect to the product measure d$, ® dx , which

mean
(o(x.u,4)=c(xu,Du)):(A-Du)=0in spts,. (4.13)
Thus,

sptd, < {Ae IM™" /(o (x,u,4)-o(xu,Du)):(A-Du)=0}.  (4.14)

Case c: We prove that, the map F - o(x,u,F) is strictly monotone, for all
XeQ andforall ue IR"™.

Sine & is strict monotone, and according to (4.14),
sptg, ={Du}, i.e, & =5,,, ae.in Q,
which implies that, Du, — Du in measure. For the rest of our prove is similarly
to case d.
Case b: We start by showing that for almost all X € {2, the support of &, is

contained in the set where W agrees with the supporting hyper-plane.
L= {(A,W (x,u,Z)+a(x,u,ﬂT):(/l—/T))} with 4 = Du(x).

So, it suffices to prove that
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spt9, c K, ={/1 eIM™" /W(x,u,/l)=W(x,u,Z)+a<x,u,/T):(/1—I)} (4.15)

If A esptg,,thanks to (4.14), we have
(1-t)-(o(x,u,Du)-o(x,u,4)):(Du-2)=0,forall te[0,1].  (4.16)

On the other hand, since & is monotone, for all t < [0,1] we have:
(1-t)-(o(x,u,Du+t-(2-Du))-c(xu,1)):(Du-1)>0. (4.17)
By subtracting (4.16) from (4.17), we get
(1—t)[a(x,u,Z+t(ﬂ—1))—a(x,u,1)} : (Z—ﬂ) >0, (4.18)
forall t<[0,1]. Doing the same by the monotonicity in (4.18), we obtain
(-t o(xur+t(2-2))-o(xu,2)|:(Z-2)<0. (4.19)
Combining (4.18) and (4.19), we conclude that
(@-t)[e(xu+t(2-7))-o(xu,)]:(2-2)=0, (4.20)

forall t<[0,1],and forall A e spts,.
Now, it follows from (4.19) that

W (x,u,2) =W (%,U, Z)+(W (x,u,2)-W (x,u,Z))

1

=W (xu,2)+ [[[o(xu,Z)+t(2-7)]:(2-7)dt

0

( A)ro(xu )( 7)

Witch prove (4.15).
Now, by the coercivity of W, we get

W (%,u,2)2W (x,u,2)+o(xu,2):(4-2),

forall A e IM™". Therefore,
L is a supporting hyper-plane, for all

leK,. (4.21)
Moveover, the mapping 1+ W (x,u,4) is continuously differentiable, so we
obtain
o(xu,2)=c(xu,1) foral 2eK,. (4.22)
Thus,
F(X)= ], o o(%u,2)d8, (2) =5 (XU, 7). (4.23)

Now, we consider the Carathéodory function
gv(x,u,p):‘(a(x,u,p)—E(x) :Dgo‘,

and lets g, (x)=g,(x,u,,Du,) is equ1 integrable. Thus, thanks to BALL’s
theorem, see [6] gk — g weaklyin L (Q) and the weakly limit of gis given by

.”R”‘ M ™" |O-(X m 2“ |d5u )®d‘9x (’1)
= Spw |a X,u(x), A x)|d19X (2)
=0.
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According to (4.22) and (4.23), and since g, >0, it follow that g, —0
strongly in L (Q> by Fatou lemma, which gives

lim| o(x,u,,Du,): Dpdx = jgo-(x,u, Du): Dgdx.

k—o0
Thus
(F(u),p)=0, Vpe [J V..
kelN

This completes the proof of the case (b).
Case (a): In this case, on spt3, , we affirm that,

o(%u,2):M =o(x,u,Du):M +(VFo-(x,u,Du): M):(Du—l), (4.24)

forall M € IM™" | where V. is the derivative with respect to the third varia-
bleof & and 7 =Du(x)-.

Thanks to the monotonicity of o , we have

(a(x,u,/l)—a(x,u, Du+tM )):(/1— Du-tM )20, forall te R.

By invoking (4.19), we obtain
-o(X,u,4):(tM)
> -0 (X,u,Du):(A-Du)+o(x,u,Du+tM):(2-Du-t-M).
On the other hand, F i o(x,u,F) isa C' function, so
o(x,u,Du+tM)=0c(x,u,Du)+V_(x,u,Du)-(tM)+o(t).
Thus
—o (XU, A):(t-M)
>—c(X,u,Du):(tM)+V o (x,u,Du)(t-M):(A—Du)+o(t),
which gives
—o(x,u,2):(t-M)
>t[Veo(x,u,Du):(M):(A-Du)-o(x,u,Du):(M)]+o(t),
tis arbitrary in (4.24).
Finally for all ¢EUkE|NVk the sequence o (x,u,,Du,):Dg is
equi-integrable. Then, by the BALL’s theorem, see [1] the weak limit is
LM o(x,u,4): Dpdd, (1)
By choosing M =DU in (4.24), we obtain
mex(Du ~2)(o(xu,4): Dp): Dedd, (1)
= prxa(x,u, Du):Dgd 4, (4)+(Veo(x,u,Du): Dgo)t prx(Du ~2)d8, (2)
=(o(xu,Du):Dp)|_ d8 (21)=o(x.u,Du): Dg.

sptIy

Hence:
o (x,u.,Du,): Dp — o (x,u,Du): Dg strongly

This proves that
(F(u),p)=0forall pe|JV,.
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And since [ Jv, is dense in Wy (Q,a), R" ), so u is a weak solution of
(QES )*; 4 »as desired.

Remark 4.2 In case (b) o (xu,,Du,): Dy — o(x,u,Du): D strongly, but
in the case(c) and(d) Du, — Du in measure.

Exemple 4.1 We shall suppose that the weight functions satisty.

=0, j=1,2,---,m forsome i, 1% and o, (x)=w(x);xeQ, with
CU"{Olz },fora]] ielul®, j=12,---,m,and i=i, with

w(x)>0 aein Q then, we can consider the Hardy inequality in the form:

[jzmifg|”i(x)|q71(x)dxfﬁ{ D fQ|DuU|pwi,-Ji,

1<i<N,1<j<m

for every U EWol’p (Q, o, R" ) with a constant C>0 independent of u and for

some (> p'. Let us consider the Carathéodory functions. (x)
oy (xn.&)=0(x)|&[" sng(&). i=12--micl
o; (X777,§|C)=w(x)|§ij|p’ sng (&), i=12-miel’i=i

0i0j<x,77,§|c)20,j:1,2,---,m
1

£, (x7,6)=-sign(&) Y of | o]

The above functions defined by (x) satisties the growth conditions ().
In particular, let use the special weight function @) expressed in term of
the distance to the boundary 0 denote d (x) =dist(x;0Q) and
CO(X) =d" (X), 7 (X) =d” (X) the hardy inequality reads:
1 1
(ZJ Juj ( | d“ (x)dx Jq Sc(mmzmm _[Q|Diju|p dl(x)]p ,

and the corresponding Wo’p (Q; [ Rm) oL (Q; 7:R" ) is compact if:
1) For, 1< p<g<o

A< p—l;ﬂ—£+1z O;ﬁ—£+ﬂ—ﬂ+1>0
qa p a p g p
2) For, 1<g<p<»®
P T PN P W S R
q p a p q p

3) For, q>1
(9’ —1) <1, by the simple modifications of the example in [11]. Moreover,

the monotonicity condition are satisfied.

Z(Uij (X,?],f, )_O-ij (X’U'gl’))<§ij _gi;)

1

- (|§'J | Sng ij |é’:|l | sng gu ))(fu - éur ) =0

for almost all X€ ) and for all, & & eM". This last inequality cannot be
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strict, since for Eo =&l with Eoi = &L for all j=12,---,m. But £ =8

for iel®, iziy, j=L12,---,m the corresponding expression is Zero.
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