Artificial Neural Networks in Agriculture

Kujawa, Sebastian and Niedbała, Gniewko (2021) Artificial Neural Networks in Agriculture. Agriculture, 11 (6). p. 497. ISSN 2077-0472

[thumbnail of agriculture-11-00497.pdf] Text
agriculture-11-00497.pdf - Published Version

Download (194kB)

Abstract

Artificial neural networks are one of the most important elements of machine learning and artificial intelligence. They are inspired by the human brain structure and function as if they are based on interconnected nodes in which simple processing operations take place. The spectrum of neural networks application is very wide, and it also includes agriculture. Artificial neural networks are increasingly used by food producers at every stage of agricultural production and in efficient farm management. Examples of their applications include: forecasting of production effects in agriculture on the basis of a wide range of independent variables, verification of diseases and pests, intelligent weed control, and classification of the quality of harvested crops. Artificial intelligence methods support decision-making systems in agriculture, help optimize storage and transport processes, and make it possible to predict the costs incurred depending on the chosen direction of management. The inclusion of machine learning methods in the “life cycle of a farm” requires handling large amounts of data collected during the entire growing season and having the appropriate software. Currently, the visible development of precision farming and digital agriculture is causing more and more farms to turn to tools based on artificial intelligence. The purpose of this Special Issue was to publish high-quality research and review papers that cover the application of various types of artificial neural networks in solving relevant tasks and problems of widely defined agriculture.

Item Type: Article
Subjects: European Repository > Agricultural and Food Science
Depositing User: Managing Editor
Date Deposited: 04 Feb 2023 04:20
Last Modified: 31 May 2024 05:41
URI: http://go7publish.com/id/eprint/1118

Actions (login required)

View Item
View Item