Wijsen, Nicolas and Samara, Evangelia and Aran, Àngels and Lario, David and Pomoell, Jens and Poedts, Stefaan (2021) A Self-consistent Simulation of Proton Acceleration and Transport Near a High-speed Solar Wind Stream. The Astrophysical Journal, 908 (2). L26. ISSN 2041-8213
Wijsen_2021_ApJL_908_L26.pdf - Published Version
Download (1MB)
Abstract
Solar wind stream interaction regions (SIRs) are often characterized by energetic ion enhancements. The mechanisms accelerating these particles, as well as the locations where the acceleration occurs, remain debated. Here, we report the findings of a simulation of a SIR event observed by Parker Solar Probe at ∼0.56 au and the Solar Terrestrial Relations Observatory-Ahead at ∼0.95 au in 2019 September when both spacecraft were approximately radially aligned with the Sun. The simulation reproduces the solar wind configuration and the energetic particle enhancements observed by both spacecraft. Our results show that the energetic particles are produced at the compression waves associated with the SIR and that the suprathermal tail of the solar wind is a good candidate to provide the seed population for particle acceleration. The simulation confirms that the acceleration process does not require shock waves and can already commence within Earth's orbit, with an energy dependence on the precise location where particles are accelerated. The three-dimensional configuration of the solar wind streams strongly modulates the energetic particle distributions, illustrating the necessity of advanced models to understand these particle events.
Item Type: | Article |
---|---|
Subjects: | European Repository > Physics and Astronomy |
Depositing User: | Managing Editor |
Date Deposited: | 17 May 2023 04:11 |
Last Modified: | 02 Dec 2023 06:05 |
URI: | http://go7publish.com/id/eprint/2268 |