Mougkogiannis, Panagiotis and Adamatzky, Andrew (2024) Proto-Neurons from Abiotic Polypeptides. Encyclopedia, 4 (1). pp. 512-543. ISSN 2673-8392
encyclopedia-04-00034.pdf - Published Version
Download (10MB)
Abstract
To understand the origins of life, we must first gain a grasp of the unresolved emergence of the first informational polymers and cell-like assemblies that developed into living systems. Heating amino acid mixtures to their boiling point produces thermal proteins that self-assemble into membrane-bound protocells, offering a compelling abiogenic route for forming polypeptides. Recent research has revealed the presence of electrical excitability and signal processing capacities in proteinoids, indicating the possibility of primitive cognitive functions and problem-solving capabilities. This review examines the characteristics exhibited by proteinoids, including electrical activity and self-assembly properties, exploring the possible roles of such polypeptides under prebiotic conditions in the emergence of early biomolecular complexity. Experiments showcasing the possibility of unconventional computing with proteinoids as well as modelling proteinoid assemblies into synthetic proto-brains are given. Proteinoids’ robust abiogenic production, biomimetic features, and computational capability shed light on potential phases in the evolution of polypeptides and primitive life from the primordial environment.
Item Type: | Article |
---|---|
Subjects: | European Repository > Multidisciplinary |
Depositing User: | Managing Editor |
Date Deposited: | 09 Mar 2024 04:50 |
Last Modified: | 09 Mar 2024 04:50 |
URI: | http://go7publish.com/id/eprint/4211 |