Novel Lanthanum Doped Magnetic Teff Straw Biochar Nanocomposite and Optimization Its Efficacy of Defluoridation of Groundwater Using RSM: A Case Study of Hawassa City, Ethiopia

Amibo, Temesgen Abeto and Beyan, Surafel Mustafa and Damite, Tsegaye Markos and Xu, Jinyang (2021) Novel Lanthanum Doped Magnetic Teff Straw Biochar Nanocomposite and Optimization Its Efficacy of Defluoridation of Groundwater Using RSM: A Case Study of Hawassa City, Ethiopia. Advances in Materials Science and Engineering, 2021. pp. 1-15. ISSN 1687-8434

[thumbnail of 9444577.pdf] Text
9444577.pdf - Published Version

Download (4MB)

Abstract

The problem extent of the large concentration of fluoride ions in drinking water is still a central health issue. In the present study, lanthanum doped magnetic Teff straw biochar (LDMTSB) was developed as a novel adsorbent for removing fluoride ions in the groundwater in Rift-Valley regions, especially Hawassa city, Ethiopia. The synthesized LDMTBC was characterized via FTIR, XRD, SEM, and BET. And, this analysis proposed that multiadsorption techniques such as ligand exchange, precipitations, and electrostatic interaction could be evinced throughout the fluoride ions adsorption process by LDMTSB. The constraints that influence the adsorption efficacy, namely, a dosage of LDMTSB, contact time, pH of the solution, and rotational speed, were analyzed and optimized using the response surface methodology approach. Under the optimum situations, LDMTSB dosage: 3.97 g, contact time: 56.36 min, rotational speed: 591.19 rpm, and pH: 3.968 demonstrate high efficacy of LDMTSB with 98.89% fluoride removal capacity. Further, the quadratic model (R2 = 0.9841) was designated for governing the mathematical process. The LDMTSB was successful in the removal of fluoride ions in the groundwater. This study provides a valuable economical solution for the application of Teff straw.

Item Type: Article
Subjects: European Repository > Engineering
Depositing User: Managing Editor
Date Deposited: 12 Jan 2023 06:22
Last Modified: 19 Feb 2024 04:24
URI: http://go7publish.com/id/eprint/1609

Actions (login required)

View Item
View Item