XANES Study of Tribofilm Formation With Low Phosphorus Additive Mixtures of Phosphonium Ionic Liquid and Borate Ester

Vyavhare, Kimaya and Sharma, Vibhu and Sharma, Vinay and Erdemir, Ali and Aswath, Pranesh B. (2021) XANES Study of Tribofilm Formation With Low Phosphorus Additive Mixtures of Phosphonium Ionic Liquid and Borate Ester. Frontiers in Mechanical Engineering, 7. ISSN 2297-3079

[thumbnail of pubmed-zip/versions/1/package-entries/fmech-07-671457/fmech-07-671457.pdf] Text
pubmed-zip/versions/1/package-entries/fmech-07-671457/fmech-07-671457.pdf - Published Version

Download (3MB)

Abstract

The development of low phosphorus engine oils is important to minimize phosphorus-induced exhaust catalyst poisoning and resulting in harmful emissions. In this study, low phosphorus oil formulations were prepared by using an ashless additive mixture of borate ester (SB) with ionic liquid composed of a phosphonium cation and phosphate anion (P_DEHP) at 350 and 700 ppm phosphorus. Tribological properties of this binary additive system were evaluated using a reciprocating cylinder on a flat test configuration. Favorable interaction between P_DEHP and SB resulted in a significant reduction in friction coefficient and wear volume, in particular for P_DEHP(700P) + SB oil blend. Time-scale analysis of tribofilm formation was determined by running the tribological experiments for 5, 15, and 60 min duration. Electrical contact resistance (ECR) results revealed that the addition of P_DEHP at 350 ppm of phosphorus to SB at 500 ppm of boron can reduce the incubation time from 300 to 100 s for stable tribofilm formation. X-ray absorption near-edge spectroscopy (XANES) analysis of tribofilms indicates that the tribofilm mechanism for additive mixtures of P_DEHP and SB initially involves the formation of boron oxide-based films, which later interact with phosphorus to form boron phosphates in addition to iron phosphates. Incorporation of the high amount of boron phosphates in addition to boron oxide/acid and iron phosphates in the tribofilms contributed to the improved tribological performance of P_DEHP(700P) + SB oil. XANES results reveal that tribofilms formed due to the interaction of SB and P_DEHP evolve to a cross-linked structure, wherein the chain length of polyphosphates is increased with the increase in rubbing time.

Item Type: Article
Subjects: European Repository > Engineering
Depositing User: Managing Editor
Date Deposited: 14 Jun 2023 03:13
Last Modified: 14 Sep 2023 07:39
URI: http://go7publish.com/id/eprint/2460

Actions (login required)

View Item
View Item